

Evaluation of the possibility of using atmospheric information derived from a high performance imaging system for short-range weather forecasting

Su Jeong Lee¹, Myoung-Hwan Ahn¹, Sung-Rae Chung²

- 1. Department of Atmospheric Sciences and Engineering, Ewha Womans University
 - 2. National Meteorological Satellite Center

AMI Atmospheric Profile (AAP) retrieval algorithm

- ◆ **Purpose:** Retrieval of clear-sky atmospheric profiles from AMI
- ◆ Measurements: Brightness temperature at 8 IR channels (6.2, 6.9, 7.3, 9.6, 10.4, 11.2, 12.4, 13.3 μm)
- ◆ Retrieval products: vertical Temperature(T) / Moisture(Q) profiles
- **Derived products:** Total Precipitable Water (TPW), Total Ozone(TOZ), Stability indices (5 kinds)

* GK-2A (Geo-KOMPSAT 2A)

* AMI (Advanced Meteorological Imager)

algorithm

1B

Level

IR Ch.

6.2

6.9

7.3

8.6

9.6

10.4

11.2

12.4

13.3

Clear-sky products

- T/Q profile
- **TPW**
- TOZ
- Stability indices
 - ✓ K-index
 - ✓ Lifted index
 - ✓ Showalter index
 - ✓ Total Totals
 - ✓ CAPE

Introduction

Advantage of Geo-imager-derived products

- to fill the gaps between measurements
- to capture rapidly developing and decaying

Retrieval accuracy

 on-going analysis and experiments on performance factors (quality/type of input data, algorithm parameters) that need to be considered

Algorithm Outline

- Retrieval scheme: iterative physical retrieval with optimal estimation(OE)
 - ✓ Minimize Cost function

$$J = [y - F(x)]^{T} S_{\varepsilon}^{-1} [y - F(x)]^{T} + [x - x_{a}]^{T} S_{a}^{-1} [x - x_{a}] \longrightarrow \frac{\partial J}{\partial x} = 0$$

$$Obs + RTM \qquad background$$

✓ Gauss-Newton Method for moderately nonlinear retrieval problem

$$x_{i+1} = x_i - [\nabla_x g(x_i)]^{-1} g(x_i)$$

(Rodgers, 1976; Rodgers, 2000)

✓ Iterative solution

$$\mathbf{x}_{n+1} = \mathbf{x}_{0} + (\mathbf{S}_{a}^{-1} + \mathbf{K}_{n}^{T} \cdot \mathbf{S}_{\varepsilon}^{-1} \cdot \mathbf{K}_{n})^{-1} \times \mathbf{K}_{n}^{T} \cdot \mathbf{S}_{\varepsilon}^{-1} \left[\mathbf{T}_{B} - \mathbf{T}_{B,n} + \mathbf{K}_{n} \cdot (\mathbf{x}_{n} - \mathbf{x}_{0}) \right]$$

n iteration step

 x_0 background profile

 x_n , x_{n+1} the previous and current solutions (atmospheric profiles)

T_B observed brightness temperature

 $T_{B,n}$ simulated brightness temperature for profile of iteration step n

 $\mathbf{K}_{\mathbf{n}}$ Jacobian matrix at iteration step n

S_a error covariance matrix of background

 S_{ϵ} error covariance matrix of observed TB and of RTM

Data

$$\mathbf{x}_{n+1} = \mathbf{x}_0 + (S_a)^1 + K_n^T \cdot S_{\varepsilon}^{-1} \cdot K_n)^{-1} \times K_n^T \cdot S_{\varepsilon}^{-1} (T_B - T_{B,n} + K_n \cdot (\mathbf{x}_n - \mathbf{x}_0))$$

- Observation (T_B): Radiance measured from AHI 8 (6.2, 6.9, 7.3, 9.6, 10.4, 11.2, 12.4, 13.3 μm) infrared channels, converted to brightness temperature
- \triangleright Observation error covariance (S_{ε}): AHI NEdT (WMO, OSCAR)
- Background or First Guess profile (x₀):
 - ✓ **Temperature and moisture:** short-range (6-11 hr, 1hr interval) forecast from KMA Global prediction model based on UK Met-office Unified Model (UM)
 - ✓ **Ozone profile**: ozone profile created from monthly climatology (McPeters, and Labow, 2017) and satellite-derived total ozone (OMI/OMPS)
- > Background error covariance (S_a):
 - ✓ **Temperature and moisture**: B-matrix used in NWPSAF 1DVAR system
 - ✓ **Ozone**: B-matrix for ECMWF 1DVAR
- ➤ Land Surface Emissivity (LSE): monthly climatology created from 12 years (2003-2014) of UW-Madison baseline fit global emissivity database (Seemann et al., 2007)

Algorithm flowchart

Algorithm characteristics

> Change of TB bias (Obs. – simulation) with iteration

About 3% of cloud-free pixels succeed to retrieve profiles with more than 1 iteration

Algorithm characteristics

> Iteration map

10.4 TB image

Pixel successfully retrieve profiles

- without iteration
- with 1 iteration
- with 2 iterations
- with 3 iterations
- with 4 iterations

Performance factors – error covariance

7.e+05 1.e+06 [ppmv]

1.0 1.5

Performance factors – error covariance

NWPSAF(UM) B-matrix

ECMEF B-matrix

$$X_{n+1} = X_0 + (S_a^{-1} + K_n^T \cdot S_{\epsilon}^{-1} \cdot K_n)^{-1} \times K_n^T \cdot S_{\epsilon}^{-1} \left[T_B - T_{B,n} + K_n \cdot (X_n - X_0) \right]$$

* assumption: radiance data does not have a systematic bias

Used GSICS* correction to remove systematic bias in AHI data JMA (2016)

HIMAWARI-8 BAND08 vs. METOP-A/IASI 24 Jul 2016 (Period: 10 Jul 2016 to 07 Aug 2016)

Radiance (AHI) =
$$C_0 + C_1 \times \text{Radiance (hyper sounder)}$$

 C_1 : Slope,

 C_0 : Intercept

Corrected radiance (AHI) = [HSD radiance (AHI) - C_0] / C_1

Calculated mean C0 and C1 from Jul 1 2015 to Jul 24, 2016 (388 days in total)

Channel	6.2	6.9	7.3	8.6	9.6	10.4	11.2	12.4	13.3
C ₀ (intercept)	-8E-04	-0.021	-0.175	0.058	0.17	0.375	0.289	0.416	0.428
C ₁ (slope)	0.993	0.996	1.009	0.998	0.991	0.996	0.998	0.995	0.997

- > O-B vs. Obs.-Ret. with varying satellite zenith angle (with error bars)
- * Analyzed data: 20 scenes from 1~13 Aug. 2015 (12hr interval), clear-sky, ocean full-disk

Before Bias Correction

- > O-B vs. Obs.-Ret. with varying satellite zenith angle (with error bars)
- * Analyzed data: 20 scenes from 1~13 Aug. 2015 (12hr interval), clear-sky, ocean full-disk

Before Bias Correction

Performance factors – land surface emissivity

- Accurate land surface emissivity data is essential for the simulation of accurate brightness temperature particularly for the channels sensitive to the surface
- ➤ Currently available data: baseline fit Global infrared land surface emissivity database developed at the CIMSS (Seemann et al., 2007)
- Created monthly climatology from the database of 12 years (2003-2014) and interpolated to AHI infrared channels using Akima spline interpolation

Performance factors – emissivity

> Need to deal with inter-month variability of the monthly climatology

March ~ April

- ✓ Inter-month variability is particularly large between Mar. and Apr. and Dec. and Jan. for channel 8.6 and 10.4 in arid areas in East Asia
- ✓ the largest difference up to 0.1 is shown between Mar. and Apr. for channel 8.6
- ✓ Interpolation for the time domain (e.g., ±5 days)is required to reduce the variability

Case study: severe weather

- Severe weather event associated with thermo-dynamically unstable atmospheric condition
- ➤ Date: Aug. 08, 2015 (04 UTC~)
- ➤ Rainfall: max 57.5mm /hour (28 mm /15min) around Seoul area

Case study: severe weather

Retrieved products

0 10 20 30 40 50 [mm]

12 16 20 [mm]

Validation (TPW)

Product compared: TPW Data used: 02 Aug., 2015

Reference data: TPW from IASI on-board Metop-A (left), Metop-B(middle), and

ECMWF analysis

Validation (TPW)

Total Precipitable Water Aug. 02, 2015

- ✓ Required accuracy for TPW Bias: 1 mm RMSE: 3 mm
- ✓ Shows better agreement with ECMWF analysis (for three cases, 00/06/12 UTC) than IASI TPW
- ✓ Shows better agreement with TPW from IASI onboard MetopB than Metop-A *launch

Metop-A: Oct. 2006 Metop-B: Sep., 2012

Need to get reliable validation results with sufficient amount of data and for various cases

Summary

- ➤ AAP (AMI Atmospheric Profile) algorithm has been developed to retrieve clear-sky atmospheric T/q profiles and TPW, TOZ, instability indices from Korea's second generation imager.
- > Algorithm configuration:
 - ✓ Sensor data: AHI radiance from 8 infrared channels
 - ✓ First guess profile for T, q: UM 6-11 hr forecast fields
 - \checkmark First guess profile for O₃: climatology + OMI total ozone (-1d)
 - ✓ Background error covariance matrix: UM for T and q, ECMWF model for O₃
 - ✓ RTM: RTTOV v.11.2
 - ✓ Land surface emissivity: monthly climatology created from CIMSS IREMIS
- > Algorithm Run-time configuration
 - ✓ RMSE Threshold for convergence: 1.0~1.3 K (clear), 1.5 K (cloudy)
 - ✓ Maximum number of iteration: 4
- > Retrieved products show the potential benefits of using high-resolution geostationary imagery data for short-range severe weather forecast.
- Algorithm will be validated with longer-time period of data and performance will be enhanced by improving and adding input data (add 8.6 μm channel, apply accurate instrument error, improve ozone first-guess, etc.)

References

- Cheng Da (2015) Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite, *Remote Sensing Letters*, 6:8, 637-646
- EUMETSAT, 2013: MTG-FCI: ATBD for Global Instability Indices Product, EUM/MTG/DOC/10/0381
- Hocking, J., P. Rayer, D. Rundle, R. Saunders, M. Matricardi, A. Geer, P. Brunel, and J. Vidot, 2014: RTTOV v11 Users Guide, WPSAF-MO-UD-028
- JMA, n.d.: Imager(AHI). Meteorological Satellite Center(MSC) of JMA. Retrieved from: http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html
- LI, J., T. J. Schmit, X. Jin, and G. Martin, 2012: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Legacy Atmospheric Moisture Profile, Legacy Atmospheric Temperature Profile, Total Precipitable Water, and Derived Atmospheric Stability Indices. NOAA/NESDIS, Version 3.0, July 30, 2012
- McPeters, R. D., and G. J. Labow (2012), Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms, *J. Geophys. Res.*, 117, D10303, doi:10.1029/2011JD017006
- Lyu (2015) Current Status and Future Plan of KMA Satellite Program, presented at 2015 NOAA satellite Conference, April 27, 2015
- Rodgers, C. D (1976), Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. *Geophys. Space Phys.* 14, 609-624
- Rodgers, C. D. (2000), Inverse methods for atmospheric sounding: theory and practice, Singapore: World Scientific Press
- Seemann, S.W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, H.-L. Huang, 2007: Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements. *J. of Appl. Meteor. and Climatol., Vol. 47*, 108-123
- Xiaolei Z. and F. Weng (2015) Assessment of AHI Level-1 Data for HWRF Assimilation. Presented at The Sixth Asia/Oceania Meteorological Satellite Users' Conference, Tokyo, Japan, November 9-13, 2015

Thank you for your attention

Acknowledgement

This work was supported by "Development of OOO Algorithms" project, funded by ETRI, which is a subproject of "Development of Geostationary Meteorological Satellite Ground Segment (NMSC-2016- 01)" program funded by NMSC (National Meteorological Satellite Center) of KMA(Korea Meteorological Administration).

> TB difference before and after Bias Correction

Error Analysis

Degrees of freedom for signal

$$d_{\mathbf{s}} = \operatorname{tr}(\mathbf{S}_{a}\mathbf{K}^{T}[\mathbf{K}\mathbf{S}_{a}\mathbf{K}^{T} + \mathbf{S}_{\epsilon}]^{-1}\mathbf{K})$$
Gain

Degrees of Freedom for Signal (20150802 00UTC)

Mean DFS: 3.0 Ranges: p.3 ~ 3.3

24

Data – 1. Sensor data

- Radiance of 8 infrared channels measured from the Advanced Himawari Imager (AHI) of JMA as proxy to AMI
 - ✓ Comparison of GK-2A AMI and Himawari-8 AHI

		GK-2A AMI	Himawari-8	AHI	
	8	6.24	6.18	1	
	9	6.95	6.95	1	
	10	7.34	7.34	1	
Infrared	11	8.60	8.60	* 0	ver ocean only
	12	9.63	9.61	1	
channels	13	10.4	10.4	1	
	14	11.2	11.2	1	
	15	12.3	12.4	1	
	16	13.3	13.3	1	
Sub-satellite point		128 E	140.7 E		
Spatial resolution (IR)		2 km	2 km		
Temporal resolution (FD)		10 min	10 min		

✓ Instrument (AHI) bias

- Study shows that scan-angle dependent bias is negligible (Cheng, 2015)
- To get accurate instrument error(S_E), GSICS* results will be used
- Currently instrument error provided by WMO is used.

Data – 2. First Guess profile

- > Temperature and Moisture profile
 - ✓ KMA Global Model forecast based on UK Met-office Unified Model (UM)
 - ✓ 6~11 hour forecast fields with 1-hour interval
 - ✓ Temporally interpolate using 2 neighboring forecast fields

✓ Spatially, assign UM grid point nearest to the AHI super-pixel center

✓ Vertical interpolation: linear for Temperature and cubic lagrange for mixing ratio

Data – 2. First Guess profile

Ozone profile

Before

Monthly Climatology with 10° latitude bands

(McPeters and Labow, 2012)

Ozonesonde (1988-2010) +

Aura MLS (2004-2010) data

After (current configuration)

Monthly Climatology with 10° latitude bands

+

OMI Total Ozone (-1d)

Data – 3. Background Error Covariance (S_a)

 \rightarrow (3L + 1) \times (3L + 1) Matrix (L=54, # of pressure levels)

^{*} ECMWF (European Center for Medium-range Weather Forecast)